Characterizing effects of landscape and morphometric factors on water quality of reservoirs using a self-organizing map
نویسندگان
چکیده
Understanding the pattern of reservoir water quality in relation to morphometry and other landscape characteristics can provide insight into water quality management. We investigated the water quality of 302 reservoirs distributed nationwide in Korea by classifying them using a self-organizing map (SOM), examining how hydrogeomorphometry variables are related to reservoir water quality, and evaluating the effects of variables at different categories including geology, land cover, hydromorphology, and physicochemistry on reservoir water quality through a theoretical path model. The SOM classified the reservoirs into six clusters, from least to most polluted, with differences in physicochemical and hydrogeomorphometry variables between clusters. Water quality exhibits strong relationships with the proportions of urban, agricultural, and forest land cover types in the watersheds. Finally, our results revealed that hydrogeomorphometry of reservoirs and percentages of land cover types within watersheds have a considerable impact on the water quality of adjacent aquatic ecosystems. 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Landforms identification using neural network-self organizing map and SRTM data
During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...
متن کاملApplication of a Self-Organizing Map for Clustering the Groundwater Quality in Kerman Province and Assessment its Suitability for Drinking and Irrigation Purposes
Evaluation of groundwater hydro chemical characteristics is necessary for planning and water resources management in terms of quality. In the present study, a self-organizing map (SOM) clustering technique was used to recognize the homogeneous clusters of hydro chemical parameters in water resources (including well, spring and qanat) of Kerman province; then, the quality classification of groun...
متن کاملDEM-based analysis of morphometric features in humid and hyper-arid environments using artificial neural network
Abstract This paper presents a robust approach using artificial neural networks in the form of a Self Organizing Map (SOM) as a semi-automatic method for analysis and identification of morphometric features in two completely different environments, the Man and Biosphere Reserve “Eastern Carpathians” (Central Europe) in a complex mountainous humid area and Yardangs in Lut Desert, Iran, a hyper...
متن کاملEstimation of Missing Daily Precipitation and Runoff Using Self-Organizing Map (A Case Study: Mazandaran Province)
Expert aquatic designers face many problems; among these, in hydrology, defective occurrences in time-series can cause errors in the ultimate results of the study. This more often happens in the regions where the number of hydrometric and rain gauge stations is limited. In addition, assessing, developing and maintaining the use of water resources require accessible long-term and high-quality qu...
متن کاملNGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map
Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental Modelling and Software
دوره 55 شماره
صفحات -
تاریخ انتشار 2014